技術支持+銷售專線 李R 152-0769-7737
超聲波焊接的形成概論;
1.超聲波焊接所形成的能量主要來自機械振動的能量,當焊接工具夾住工件時,焊接工具頭產生軸心方向位移振動使焊接件在總體
不產生位移的情況下壓緊并產生金屬內部分子間的位移交換達到在不需附加材料情況下的分子融合。
2.焊接過程中,超聲波焊接對工件焊接部位施加一種綜合的能量,靜壓力,振動能量,及所產生的適度熱量。能量的大小取決于焊
接工件的厚度及機械特性。焊接過程中所需機械振動頻率20-40千赫。大多情況下工作頻率為2千赫茲。
3.焊接溫度的產生及對焊接的影響:
(1)超聲波所產生的焊接溫度僅限于焊接部位,如焊接參數如壓力,振幅及焊接時間調節適度,融化則不會在焊接區內發生。這一點
可通過高倍顯微鏡觀察到。通過高倍熱傳感設備可測出在焊接表面層出現瞬間熱現象。焊接溫度的升高與設備的設定參數有一定
關系,焊接能量的增大會產生溫度的增加。焊接壓力的加大也同時會增大焊接溫度的提高。
(2)焊接溫度的增加另外的因素是焊接材料的物理特性。通常材料的導熱系數高低是問題的關鍵。其次是所焊接材料的機械特性如材
料硬度,可塑性材料的不同金屬元素含量。根據測定,在焊接參數調整正常情況下,超聲波焊接所導致的焊接溫度是本材料溶化
溫度的35%-50% 。
4.超聲波焊接的連接特性:
(1)在不同材料焊接實踐證實銅與鋁片的焊接可從兩種材料背面清晰看到不同分子滲透現象。金相分析表明在焊接區域內分子相互摻
合形成牢固結合層。
超聲波焊接機的結構:
超聲波焊接機由3大部分組成:
超聲波控制器
超聲波焊接體
超聲波振蕩系統
我們人類直到次大戰才學會利用超聲波,這就是利用“聲納”的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然后記錄與處理反射回聲,從回聲的特征我們便可以估計出探測物的距離、形態及其動態改變。醫學上早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以后到了60年代醫生們開始將超聲波應用于腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。東莞發動機引出線末端焊接機,東莞發動機引出線末端焊接機