1 開關電源的干擾源分析
開關電源產生電磁干擾根本的原因,就是其在工作過程中產生的高di/dt和高dv/dt,它們產生的浪涌電流和尖峰電壓形成了干擾源。工頻整流濾波使用的大電容充電放電、開關管高頻工作時的電壓切換、輸出整流二極管的反向恢復電流都是這類干擾源。開關電源中的電壓電流波形大多為接近矩形的周期波,比如開關管的驅動波形、MOSFET漏源波形等。對于矩形波,周期的倒數決定了波形的基波頻率;兩倍脈沖邊緣上升時間或下降時間的倒數決定了這些邊緣引起的頻率分量的頻率值,典型的值在MHz范圍,而它的諧波頻率就更高了。這些高頻信號都對開關電源基本信號,尤其是控制電路的信號造成干擾。
開關電源的電磁噪聲從噪聲源來說可以分為兩大類。一類是外部噪聲,例如,通過電網傳輸過來的共模和差模噪聲、外部電磁輻射對開關電源控制電路的干擾等。另一類是開關電源自身產生的電磁噪聲,如開關管和整流管的電流尖峰產生的諧波及電磁輻射干擾。
如圖1所示,電網中含有的共模和差模噪聲對開關電源產生干擾,開關電源在受到電磁干擾的同時也對電網其他設備以及負載產生電磁干擾(如圖中的返回噪聲、輸出噪聲和輻射干擾)。進行開關電源EMI/EMC設計時一方面要防止開關電源對電網和附近的電子設備產生干擾,另一方面要加強開關電源本身對電磁騷擾環境的適應能力。下面具體分析開關電源噪聲產生的原因和途徑。
圖1 開關電源噪聲類型圖
1.1 電源線引入的電磁噪聲
電源線噪聲是電網中各種用電設備產生的電磁騷擾沿著電源線傳播所造成的。電源線噪聲分為兩大類:共模干擾、差模干擾。共模干擾(Common-mode Interference)定義為任何載流導體與參考地之間的不希望有的電位差;差模干擾(Differential-mode Interference)定義為任何兩個載流導體之間的不希望有的電位差。兩種干擾的等效電路如圖2[1]所示。圖中CP1為變壓器初、次級之間的分布電容,CP2為開關電源與散熱器之間的分布電容(即開關管集電極與地之間的分布電容)。
(a)共模干擾
(b)差模干擾
圖2 兩種干擾的等效電路
如圖2(a)所示,開關管V1由導通變為截止狀態時,其集電極電壓突升為高電壓,這個電壓會引起共模電流Icm2向CP2充電和共模電流Icm1向CP1充電,分布電容的充電頻率即開關電源的工作頻率。則線路中共模電流總大小為(Icm1+Icm2)。如圖2(b)所示,當V1導通時,差模電流Idm和信號電流IL沿著導線、變壓器初級、開關管組成的回路流通。由等效模型可知,共模干擾電流不通過地線,而通過輸入電源線傳輸。而差模干擾電流通過地線和輸入電源線回路傳輸。所以,我們設置電源線濾波器時要考慮到差模干擾和共模干擾的區別,在其傳輸途徑上使用差模或共模濾波元件抑制它們的干擾,以達到好的濾波效果。
1.2 輸入電流畸變造成的噪聲
開關電源的輸入普遍采用橋式整流、電容濾波型整流電源。如圖3所示,在沒有PFC功能的輸入級,由于整流二極管的非線性和濾波電容的儲能作用,使得二極管的導通角變小,輸入電流i成為一個時間很短、峰值很高的周期性尖峰電流。這種畸變的電流實質上除了包含基波分量以外還含有豐富的高次諧波分量。這些高次諧波分量注入電網,引起嚴重的諧波污染,對電網上其他的電器造成干擾。為了控制開關電源對電網的污染以及實現高功率因數,PFC電路是不可或缺的部分。
圖3 未加PFC電路的輸入電流和電壓波形
1.3 開關管及變壓器產生的干擾
主開關管是開關電源的核心器件,同時也是干擾源。其工作頻率直接與電磁干擾的強度相關。隨著開關管的工作頻率升高,開關管電壓、電流的切換速度加快,其傳導干擾和輻射干擾也隨之增加。此外,主開關管上反并聯的鉗位二極管的反向恢復特性不好,或者電壓尖峰吸收電路的參數選擇不當也會造成電磁干擾。
開關電源工作過程中,由初級濾波大電容、高頻變壓器初級線圈和開關管構成了一個高頻電流環路。該環路會產生較大的輻射噪聲。開關回路中開關管的負載是高頻變壓器初級線圈,它是一個感性的負載,所以,開關管通斷時在高頻變壓器的初級兩端會出現尖峰噪聲。輕者造成干擾,重者擊穿開關管。主變壓器繞組之間的分布電容和漏感也是引起電磁干擾的重要因素。
1.4 輸出整流二極管產生的干擾
理想的二極管在承受反向電壓時截止,不會有反向電流通過。而實際二極管正向導通時,PN結內的電荷被積累,當二極管承受反向電壓時,PN結內積累的電荷將釋放并形成一個反向恢復電流,它恢復到零點的時間與結電容等因素有關。反向恢復電流在變壓器漏感和其他分布參數的影響下將產生較強烈的高頻衰減振蕩。因此,輸出整流二極管的反向恢復噪聲也成為開關電源中一個主要的干擾源。可以通過在二極管兩端并聯RC緩沖器,以抑制其反向恢復噪聲。
1.5 分布及寄生參數引起的開關電源噪聲
開關電源的分布參數是多數干擾的內在因素,開關電源和散熱器之間的分布電容、變壓器初次級之間的分布電容、原副邊的漏感都是噪聲源。共模干擾就是通過變壓器初、次級之間的分布電容以及開關電源與散熱器之間的分布電容傳輸的。其中變壓器繞組的分布電容與高頻變壓器繞組結構、制造工藝有關。可以通過改進繞制工藝和結構、增加繞組之間的絕緣、采用法拉第屏蔽等方法來減小繞組間的分布電容。而開關電源與散熱器之間的分布電容與開關管的結構以及開關管的安裝方式有關。采用帶有屏蔽的絕緣襯墊可以減小開關管與散熱器之間的分布電容。
如圖4所示,在高頻工作下的元件都有高頻寄生特性[2],對其工作狀態產生影響。高頻工作時導線變成了發射線、電容變成了電感、電感變成了電容、電阻變成了共振電路。觀察圖4中的頻率特性曲線可以發現,當頻率過高時各元件的頻率特性產生了相當大的變化。為了保證開關電源在高頻工作時的穩定性,設計開關電源時要充分考慮元件在高頻工作時的特性,選擇使用高頻特性比較好的元件。另外,在高頻時,導線寄生電感的感抗顯著增加,由于電感的不可控性,終使其變成一根發射線。也就成為了開關電源中的輻射干擾源。
圖4 高頻工作下的元件頻率特性
電磁兼容性是指電子設備在各種電磁環境中仍能夠協調、有效地進行工作的能力。電磁兼容性設計的目的是使電子設備既能抑制各種外來的干擾,使電子設備在特定的電磁環境中能夠正常工作,同時又能減少電子設備本身對其它電子設備的電磁干擾。
1.選擇合理的導線寬度
由于瞬變電流在印制線條上所產生的沖擊干擾主要是由印制導線的電感成分造成的,因此應盡量減小印制導線的電感量。印制導線的電感量與其長度成正比,與其寬度成反比,因而短而精的導線對抑制干擾是有利的。時鐘引線、行驅動器或總線驅動器的信號線常常載有大的瞬變電流,印制導線要盡可能地短。對于分立元件電路,印制導線寬度在1.5mm左右時,即可完全滿足要求;對于集成電路,印制導線寬度可在0.2~1.0mm之間選擇。
2.采用正確的布線策略
采用平等走線可以減少導線電感,但導線之間的互感和分布電容增加,如果布局允許,好采用井字形網狀布線結構,具體做法是印制板的一面橫向布線,另一面縱向布線,然后在交叉孔處用金屬化孔相連。
為了抑制印制板導線之間的串擾,在設計布線時應盡量避免長距離的平等走線,盡可能拉開線與線之間的距離,信號線與地線及電源線盡可能不交叉。在一些對干擾十分敏感的信號線之間設置一根接地的印制線,可以有效地抑制串擾。
為了避免高頻信號通過印制導線時產生的電磁輻射,在印制電路板布線時,還應注意以下幾點:
●盡量減少印制導線的不連續性,例如導線寬度不要突變,導線的拐角應大于90度禁止環狀走線等。
●時鐘信號引線容易產生電磁輻射干擾,走線時應與地線回路相靠近,驅動器應緊挨著連接器。
●總線驅動器應緊挨其欲驅動的總線。對于那些離開印制電路板的引線,驅動器應緊緊挨著連接器。
●數據總線的布線應每兩根信號線之間夾一根信號地線。好是緊緊挨著不重要的地址引線放置地回路,因為后者常載有高頻電流。
3.抑制反射干擾
為了抑制出現在印制線條終端的反射干擾,除了特殊需要之外,應盡可能縮短印制線的長度和采用慢速電路。必要時可加終端匹配,即在傳輸線的末端對地和電源端各加接一個相同阻值的匹配電阻。根據經驗,對一般速度較快的TTL電路,其印制線條長于10cm以上時就應采用終端匹配措施。匹配電阻的阻值應根據集成電路的輸出驅動電流及吸收電流的大值來決定。
二、去耦電容配置
在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流,形成瞬變的噪聲電壓。配置去耦電容可以抑制因負載變化而產生的噪聲,是印制電路板的可靠性設計的一種常規做法,配置原則如下:
●電源輸入端跨接一個10~100uF的電解電容器,如果印制電路板的位置允許,采用100uF以上的電解電容器的抗干擾效果會更好。
●為每個集成電路芯片配置一個0.01uF的陶瓷電容器。如遇到印制電路板空間小而裝不下時,可每4~10個芯片配置一個1~10uF鉭電解電容器,這種器件的高頻阻抗特別小,在500kHz~20MHz范圍內阻抗小于1Ω,而且漏電流很小(0.5uA以下)。
●對于噪聲能力弱、關斷時電流變化大的器件和ROM、RAM等存儲型器件,應在芯片的電源線(Vcc)和地線(GND)間直接接入去耦電容。
●去耦電容的引線不能過長,特別是高頻旁路電容不能帶引線。
三、印制電路板的尺寸與器件的布置
印制電路板大小要適中,過大時印制線條長,阻抗增加,不僅抗噪聲能力下降,成本也高;過小,則散熱不好,同時易受臨近線條干擾。
在器件布置方面與其它邏輯電路一樣,應把相互有關的器件盡量放得靠近些,這樣可以獲得較好的抗噪聲效果。時種發生器、晶振和CPU的時鐘輸入端都易產生噪聲,要相互靠近些。易產生噪聲的器件、小電流電路、大電流電路等應盡量遠離邏輯電路,如有可能,應另做電路板,這一點十分重要。
四、熱設計
從有利于散熱的角度出發,印制版好是直立安裝,板與板之間的距離一般不應小于2cm,而且器件在印制版上的排列方式應遵循一定的規則:
·對于采用自由對流空氣冷卻的設備,好是將集成電路(或其它器件)按縱長方式排列,對于采用強制空氣冷卻的設備,好是將集成電路(或其它器件)按橫長方式排列。
·同一塊印制板上的器件應盡可能按其發熱量大小及散熱程度分區排列,發熱量小或耐熱性差的器件(如小信號晶體管、小規模集成電路、電解電容等)放在冷卻氣流的上流(入口處),發熱量大或耐熱性好的器件(如功率晶體管、大規模集成電路等)放在冷卻氣流下游。
·在水平方向上,大功率器件盡量靠近印制板邊沿布置,以便縮短傳熱路徑;在垂直方向上,大功率器件盡量靠近印制板上方布置,以便減少這些器件工作時對其它器件溫度的影響。 ·對溫度比較敏感的器件好安置在溫度低的區域(如設備的底部),千萬不要將它放在發熱器件的正上方,多個器件好是在水平面上交錯布局。
·設備內印制板的散熱主要依靠空氣流動,所以在設計時要研究空氣流動路徑,合理配置器件或印制電路板。空氣流動時總是趨向于阻力小的地方流動,所以在印制電路板上配置器件時,要避免在某個區域留有較大的空域。整機中多塊印制電路板的配置也應注意同樣的問題。
大量實踐經驗表明,采用合理的器件排列方式,可以有效地降低印制電路的溫升,從而使器件及設備的故障率明顯下降。
以上所述只是印制電路板可靠性設計的一些通用原則,印制電路板可靠性與具體電路有著密切的關系,在設計中不還需根據具體電路進行相應處理,才能大程度地保證印制電路板的可靠性。